COURSE INFORMATON									
Course Title	Code	Semester	L+P Hour	Credits	ECTS				
Research Methods	PHYS 514	2	3 + 0	3	10				

Language of Instruction	English
Course Level	MSc and PhD Degrees
Course Type	Compulsory
Course Coordinator	
Instructors	
Assistants	NONE
Internship	NONE
Goals	To introduce research as an integral part of professional practice. thus as a way of thinking
Content	Scientific statements, formulating a research problem, collecting data, measurement, signal processing, the scientific method, mathematical models, research design, uncertainty, probability and statistics in research, probability theories, Bayes' theorem, ethics and responsibility in scientific research, writing a research proposal

Course Learning Outcomes	Program Learning Outcomes	Teaching Methods	Assessment Methods
1) Gains an insight into research as a way of thinking and an integral part of professional practice	1	1,2	A
2) Perceives that research is an eight-step process and can conduct a plan of study and write a research proposal accordingly	5,1,6	1,2,4	A,C
3) Can clearly identify inductive and deductive scientific statements and is capable of utilising them to write a research report	2,10	1,2,4	A,C
4) Is capable of formulating a research report using a literature review to develop a draft, write about variables, list references and bibliography.	2,5,6	1,4	A,C
5) Is able to construct a hypothesis and formulate a research proposal accordingly	5	1,4	С
6) gains an understanding of how to improve research methodology and broaden their research base	6,10	1,4	A
7)Is able to differentiate between data collection methods and major approaches to information gathering	7	1,2,4	A,C
8) Is capable of considering ethical issues concerning (participants, confidentiality, information usage, method, and sponsoring organisations)	9	1,2	A
9) Gains skills in writing research proposals	8	1,4	С

Teaching Methods:	1: Lecture, 2: Question-Answer, 3: Laboratory, 4: Case-study	
Assessment Methods:	A: Testing, B: Experiment, C: Homework, D: Project	

Week	Topics	Study Materials
1	Scientific statements: justification and acceptance,	Textbook
	Deductive &Inductive reasoning, Falsification, Peer review	
2	Formulating a research problem: Basic research, Applied research, Evaluation research, Reviewing literature, Formulating a research problem, Identify variables, hypothesis construction	Textbook
3	Collecting data: selecting a method, establishing validity and reliability of a research instrument, selecting a sample, ethical issues in data collection	Textbook
4	Measurement: Measurement errors, Significant digits and rounding, Potential sources of error, Random and systematic errors, When to discard a measurement	Textbook
5	Signal processing: Electronics, Interfacing, Instrumentation	Textbook
6	Processing and displaying data	Textbook
7	The scientific method and implementation into research: Observation, Hypothesis, Experimental testing, Predictions	Textbook
8	Mathematical models: Empirical versus deterministic models	Textbook
9-10	Research design: Components, Research design and your proposal, Checklists to assist you in preparing dissertation and thesis proposals	Textbook
11-12	Uncertainty, probability and statistics in research: Probability concepts, (Probability theories and axioms, Bayes' theorem), Inductive logic and statistics	Textbook
13	Ethics and responsibility in scientific research	Textbook
14	Further Suggestions	Textbook
14	What else is needed to complete a thesis	TEXLOUK
15	Writing a research proposal	Textbook
16	FINAL EXAM	Textbook

RECOMMENDED SOURC	ES
Textbook	 Research Methodology: A Step-by-Step Guide for Beginners Paperback , 4th edn, 14 Jan 2014, <u>Ranjit</u> <u>Kumar</u>
	2. <u>Research Methodology: The Aims, Practices and ethics of</u> <u>science</u> , Peter Pruzan
Additional Resources	Explorable website – www.explorable.com

MATERIAL SHARING				
Documents	Handouts			
Assignments	Assignments every other week			
Exams	1 Final			

ASSESSMENT		
IN-TERM STUDIES	NUMBER	PERCENTAGE
Mid-term exam	2	30
Experiment	0	0
Assignment	6	10
Total		40
CONTRIBUTION OF FINAL EXAMINATION TO OVERALL GRADE		60
CONTRIBUTION OF IN-TERM TRAINING TO OVERALL GRADE		40
Total		100

CO	URSE'S CONTRIBUTION TO PROGRAM								
No	No Program Learning Outcomes			Contribution					
NO		1	2	3	4	5			
1	Gets a sound base for the main fields of physics such as Classical Mechanics, Quantum Mechanics and Electromagnetism,	х							
2	Gets the ability of interpreting, analysing, forming a synthesis and relationships between the main fields of physics and/or other sciences,					х			
3	Obtains the education required for the measurements in scientific and technological areas and the contribution of physics in the industrial applications and on the macroscopic scale such as the society,					x			
4	Follows the up-to-date scientific developments, makes the analysis/synthesis for the new ideas and evaluates them,					Х			
5	Uses the academic sources, the computer technology and the related devices,			х					
6	Joins the working and research groups, also the scientific meetings, communicates well at the national and international level,		х						
7	Gets the ability of creative and critical thinking, problem solving, researching, producing a new and original work, improving himself/herself in his/her own fields of interest,					x			
8	Gains the concepts of ethics and responsibility. Undertakes the responsibility for the solutions to the problems related with his/her field as required for having an intellectual identity.					x			

Field Courses

ECTS ALLOCATED BASED ON STUDENT WORKLOAD BY THE COURSE DESCRIPTION

Activities	Quantity	Duration (Hour)	Total Workload (Hour)
Course Duration (Excluding the exam weeks: 14x Total course hours)	14	3	42
Hours for off-the-classroom study (Pre-study, practice)	14	10	140
Mid-term examination	2	2	4
Experiment	0	0	0
Homework	6	10	60
Project	0	0	0
Final examination	1	3	3
Total Work Load			249
Total Work Load / 25 (h)			9.96
ECTS Credit of the Course			10

COURSE INFORMATON							
Course Title	Code	Semester	L+P Hour	Credits	ECTS		
STATISTICAL PHYSICS & THERMODYNAMICS	PHYS541	1	3 + 0+0	3	10		

Language of Instruction	English
Course Level	Postgraduate
Course Type	Compulsory
Course Coordinator	Prof. Dr. Necdet Aslan
Instructors	
Assistants	
Goals	
Content	

Learning Outcomes	Teaching Methods	Assessment Methods
1) Fundamentals of statistics	1,2	A,B,C
2) Fundamentals of thermodynamics	1,2	A,B,C
3) Quantum statistics	1,2	A,B,C
4) Kinetic theory of gases	1,2	A,B,C
5) Magnetism and properties	1,2	A,B,C
6) Thermodynamics cycles	1,2	A,B,C

Teaching Methods:	1: Lecture, 2: Question-Answer	
Assessment Methods:	A: Testing, B:Course project, C: Homework	

COURSE CONTENT				
Week	Topics	Study Materials		
1	INTRODUCTION			
2	DISTRIBUTION FUNCTIONS	Distributions		
3	INTERACTION AMONGST MACROSCOPIC SYSTEMS	Partition function		
4	THERMODYNAMICS LAWS	0. law		
5	APPLICATIONS OF THERMODYNAMICS	1. & 2. law		
6	STATISTICAL THERMODYNAMICS			
7	APPLICATIONS OF STATISTICAL THERMODYNAMICS			
8	ADVANCED QUANTUM STATISTICS	Microscopic systems		
9	ADVANCED MAGNETISM APPLICATIONS			
10	FERRO-PARA-DIA MAGNETISM DEFINITIONS	magnetism		
11	ADVANCED GASES KINETIC THEORY	gases		
12	FUNDAMENTALS OF PLASMA PHYSICS	plasma		
13	THERMODYNAMICS CYCLES			
14	THERMODYNAMICS CYCLES APPLICATIONS AND TECHNOLOGY			

RECOMMENDED SOURCES		
Textbook Introduction to Plasma Physics and Controlled Fusion		
Additional Resources		

	MATERIAL SHARING	
Documents		
Assignments	10 homeworks	
Exams	1 midterm, 1 final	

ASSESSMENT				
IN-TERM STUDIES NUMBER PERCENTAG				
Mid-term	1	30		
Homework	2	20		
Final	1	50		
Total		100		
CONTRIBUTION OF FINAL EXAMINATION TO OVERALL GRADE		50		
CONTRIBUTION OF IN-TERM STUDIES TO OVERALL GRADE		50		
Total		100		

	COURSE'S CONTRIBUTION TO PROGRAM					
No	No Program Learning Outcomes		Contribution			
		1	2	3	4	5
1	Gets a sound base for the main fields of physics such as Classical Mechanics, Quantum Mechanics and Electromagnetism,					Х
2	Gets the ability of interpreting, analysing, forming a synthesis and relationships between the main fields of physics and/or other sciences,					Х
3	Obtains the education required for the measurements in scientific and technological areas and the contribution of physics in the industrial applications and on the macroscopic scale such as the society,				Х	
4	Follows the up-to-date scientific developments, makes the analysis/synthesis for the new ideas and evaluates them,				Х	
5	Uses the academic sources, the computer technology and the related devices,		Х			
6	Joins the working and research groups, also the scientific meetings, communicates well at the national and international level,		Х			
7	Gets the ability of creative and critical thinking, problem solving, researching, producing a new and original work, improving himself/herself in his/her own fields of interest,					Х
8	Gains the concepts of ethics and responsibility. Undertakes the responsibility for the solutions to the problems related with his/her field as required for having an intellectual identity.		Х			

ECTS ALLOCATED BASED ON STUDENT WORKLOAD BY THE COURSE DESCRIPTION				
Activities	Quantity	Duration (Hour)	Total Workload (Hour)	
Course Duration (Excluding the exam week: 14x Total course hours)	14	3	48	
Hours for off-the-classroom study (Pre-study, practice)	14	12	168	
Mid-terms	1	3	3	
Assignment	2	12	24	
Final examination	1	3	3	
Total Work Load			246	
Total Work Load / 25 (h)			9.84	
ECTS Credit of the Course			10	

COURSE INFO	RMATION				
Course Title	Code	Semester	L+P Hour	Credits	ECTS
MATHEMATICAL METHODS AND CLASSICAL MECHANICS	PHYS 561	1	3 + 1	3	10

Prerequisites	-

Language of Instruction	English
Course Level	Graduate
Course Type	Compulsory (Theory Option)
Course Coordinator	Prof. Dr. Avadis Hacinliyan
Instructors	Prof. Dr. Avadis Hacinliyan
Assistants	
Goals	Introducing mathematical methods of physics such as vector and tensor analysis, linear algebra, Laplace and Poisson Equations. Introducing the physical and mathematical basis of classical mechanics, analytical mechanics, symmetry and invariance principles. Studying Lagrangian and Hamiltonian formulations, canonical transformations, Poisson brackets, Hamilton Jacobi theory, perturbation theory. Investigating problems that can be exactly or approximately solved.
Content	Scalars, vectors and tensors, generalized coordinates, Linear algebra review. Lagrange's Equations. Divergence, curl, Gauss's and Stokes's theorems. Particles and systems of particles. Symmetries and conservation laws Hamilton's principle and Lagrange's equations. Constrained systems. Small oscillations. Two body central force problem. Classical scattering theory. Rotating coordinate systems. Centrifugal and Coriolis forces. Solvable problems in rigid body mechanics. Legendre transformations. Hamilton's canonical equations. Canonical Transformations. Poisson Brackets. Hamilton Jacobi Theory. Action Angle Variables.

Learning Outcomes	Teaching Methods	Assessment Methods
1) Create the physical and mathematical background that the student will need in the graduate level.	1,2,3	A,B,C
2) Lay the mathematical and mechanical foundation for problems that the student will encounter in graduate studies.	1,2,3	A,B,C
3) Skill to apply knowledge in physics and mathematics Motivation And Behavior	1,2,3	A,B
4) Teach basic mathematical methods and variational principles and the Lagrange, Hamilton, Hamilton Jacobi and Poisson formulations.	1,2,3	A,B
5) Exact and approximate computation methods	1,2,3	A,B,C
6) Skill to define, formulate and solve physical problems.	1,2,3	A,B,C
 Skill to use the techniques and means necessary for physics applications. 	1,2,3	A,B,C

Teaching Methods:	1: Lecture, 2: Problem Sets, 3: Presentations
Assessment Methods:	A: Examination, B: Homework C: Presentation

	COURSE CONTENT					
Week	Week Topics					
1	Vector and scalar fields	Math Methods.				
2	Orthogonal and generalized coordinate systems. Lagrange equations.	Math. Meth. İn Physics				
3	Permutation symbols. Tensors. Flux, divergence and Gauss' theorem.	Math Meth. in Phys.				
4	Curl and Stokes' Theorem. Classical gravitational theory.	Math. Meth. in Phys				
5	Laplace and Poisson Equations. Potential Theory.	Electromagnetic Theory.				
6	Systems of particles, Principles of mechanics and conservation laws.	Classical Mechanics				
7	Midterm Exam					
8	Hamilton's principle, Calculus of variations and Lagrange's Equations. Symmetry and conservation principles. First Integrals.	Classical Mechanics.				
9	Eigenvalues and Eigenvectors. Small oscillations. Normal frequencies and coordinates	Linear algebra. Math. Methods				
10	Two body central force problem. Classical scattering theory.					

11	Orthogonal transformations, Rotating coordinate systems. Centrifugal and Coriolis forces.	Classical Mechanics.
12	Solvable problems in rigid body mechanics. Top problem.	Classical Mechanics.
13	Legendre Transformations, Hamilton's canonical equations, Canonical transformations	Math. Meth. Phys.
14	Poisson Brackets, Hamilton Jacobi Theory	Classical Mechanics
15	General Revision and Midterm Exam	

RECOMMENDED SOURCES				
Textbook	 H. Goldstein, C. P. Poole Jr., J. L. Safko, Classical Mechanics (3. Baskı), Addison Wesley ve Pearson Education (2002). ; Hans J. Weber, Frank Harris, George B. Arfken] Essential Mathematical Methods for Physicists, Academic Press. G. Stephenson and P. M. Radmore "Advanced Mathematical Methods for Engineering and Science Students, Cambridge University Press 			
Additional Resources	 C. Lanczos, The Variational Principles of Mechanics (2. Edition) Dover (1970) F. Scheck: Mechanics from Newton's Laws to Deterministic Chaos 5. Edition, Springer (2010) 			

MATERIAL SHARING				
DocumentsAhmed Yüksel Özemre, "(Math. Meth. Phys.) Fizikte Matematiksel Metotlar and "(Classical Theoretical Mechanics) Klasik Teorik Mekanik" İstanbul University Publication (1998)				
Assignments	From Textbook			
Exams				

	COURSE'S CONTRIBUTION TO PROGRAM							
No	Program Learning Outcomes	Contribution						
		1	2	3	4	5		
1	Gets a sound base for the main fields of physics such as Classical Mechanics, Quantum Mechanics and Electromagnetism,					Х		
2	Gets the ability of interpreting, analysing, forming a synthesis and relationships between the main fields of physics and/or other sciences,					Х		
3	Obtains the education required for the measurements in scientific and technological areas and the contribution of physics in the industrial applications and on the macroscopic scale such as the society,				Х			
4	Follows the up-to-date scientific developments, makes the analysis/synthesis for the new ideas and evaluates them,				Х			
5	Uses the academic sources, the computer technology and the related devices,		Х					

6	Joins the working and research groups, also the scientific meetings, communicates well at the national and international level,	х	
7	Gets the ability of creative and critical thinking, problem solving, researching, producing a new and original work, improving himself/herself in his/her own fields of interest,		х
8	Gains the concepts of ethics and responsibility. Undertakes the responsibility for the solutions to the problems related with his/her field as required for having an intellectual identity.	x	

ASSESSMENT					
IN-TERM STUDIES	NUMBER	PERCENTAGE			
Mid-terms	2	80			
Quizzes	4	10			
Assignment	8	10			
Total		100			
CONTRIBUTION OF FINAL EXAMINATION TO OVERALL GRADE		40			
CONTRIBUTION OF IN-TERM STUDIES TO OVERALL GRADE		60			
Total		100			

ECTS ALLOCATED BASED ON STUDENT WORKLOAD BY THE COURSE DESCRIPTION									
Activities	Quantity	Duration (Hour)	Total Workload (Hour)						
Course Duration (Including the exam week: 16x Total course hours)	16	4	64						
Hours for off-the-classroom study (Pre-study, practice)	16	5	80						
Mid-terms	2	10	20						
Quizzes	4	1	4						
Homework	8	3	24						
Problem Hour and Presentation (Preparation included)	5	8	40						
Final examination (Reparation Exam included)	2	10	20						
Total Work Load			252						

Total Work Load / 25 (h)	10
ECTS Credit of the Course	10

COURSE INFORMATON								
Course TitleCodeSemesterL+P HourCreditsECTS								
QUANTUM MECHANICS I	PHYS 521	1	4 + 0	4	10			

_

Language of Instruction	English
Course Level	Graduate
Course Type	Compulsory (Theory Option)
Course Coordinator	Prof. Dr. Avadis Hacinliyan
Instructors	Prof. Dr. Avadis Hacinliyan
Assistants	
Goals	The aim of this course is to teach the physical principles and interpretation of quantum mechanics and the mathematical principles on which they rest. Calculational techniques will also be emphasized.
Content	Principles of wave mechanics, Schroedinger equation, Eigenvalues and eigenstates, angular momentum, matrices in quantum mechanics, Symmetry, Approximation methods, Scattering.

Learning Outcomes	Teaching Methods	Assessmen t Methods
1) Introduces the mathematical foundations of quantum mechanics (Differential equations, Vectors and Matrices, Fourier Analysis)	1,2,3	A,B,C
2) Explain the physical principles of quantum mechanics (Classical Mechanics, Correspondance and Uncertainity principles). Introduces scientific and technological applications.	1,2,3	A,B,C
3) Develops skills to apply knowledge of physics and mathematics.	1,2,3	A,B
4) Design and perform experiments(measurement, research setup etc.), develop ability to analyze and interpret experimental results.	1,2,3	A,B
5) Introduces exact and approximate calculation methods.	1,2,3	A,B

6) Develop skill to define formulate and solve physics problems.	1,2,3	A,B
7) Develop skill to apply techniques and devices necessary for physical applications	1,2,3	A,B,C

Teaching Methods:	1: Lecture, 2: Problkem Sets 3: Problem Session		
Assessment Methods:	A: Examination B: Homework C: Presentation		

	COURSE CONTENT					
Week	Topics	Study Materials				
1	MATHEMATICAL AND PHYSICAL FOUNDATIONS OF QUANTUM MECHANICS	Modern Physics, Math Methods of Physics				
2	SCHRÖDINGER WAVE EQUATION, WAVE FUNCTION	Modern Physics,				
3	EIGENVALUE AND EIGENVECTORS, EXPANSION POSTULATE, INTERPRETATION AND APPLICATIONS. STRUCTURE OF QUANTUM MECHANICS	Math Methods of Physics Sturm Liouville Theory				
4	BOUND AND SCATTERING STATE PROBLEMS IN ONE DIMENSION	Differential Equations, Probability				
5	OPERATORS, SYMMETRY AND CONSERVATION LAWS	Classical Mechanics				
6	PROBLEMS IN MORE THAN ONE DIMENSION, SEPARATION OF VARIABLES, MANY PARTICLE WAVE FUNCTIONS	Math. Methods in Physics				
7	MIDTERM EXAM					
8	MATRIX MECHANICS, ANGULAR MOMENTUM PROBLEM	Linear Algebra				
9	PROBLEMS WITH SPHERICAL SYMMETRY. THE HYDROGEN ATOM	Math. Methods in Physics				
10	SPİN AND IDENTICAL PARTICLES	Angular Momentum Operators				
11	PERTURBATION THEORY	Math. Methods in Physics				
12	VARIATIONAL AND OTHER APPROXIMATION METHODS. TIME DEPENDENT PERTURBATION THEORY.	Math. Meth in Physics				
13	SCATTERING THEORY	Math. Meth in Physics				

14	REVIEW AND MIDTERM EXAMINATION	
----	--------------------------------	--

RECOMMENDED SOURCES				
Textbook	E.Merzbacher Quantum Mechanics (3. Edition). Wiley, 1998			
Additional Resources	R: Shankar Principles of Quantum Mechanics, (2. Edition)Springer (1994)L.D.Landau and E. M. Liftshitz Quantum Mechanics. Non-relativistic theory (3. Edition) Butterworth Heinemann (1981)			

MATERIAL SHARING				
Documents	"Quantum Mechanics Demystified" David McMahan, Schaum's Outline of Theory and Problems of Quantum Mechanics" by Y. Peleg, R. Pnini, E. Zaarur			
Assignments	From the textbook			
Exams				

ASSESSMENT				
IN-TERM STUDIES	NUMBER	PERCENTAGE		
Mid-terms	2	80		
Quizzes		10		
Assignment	8	10		
Total		100		
CONTRIBUTION OF FINAL EXAMINATION TO OVERALL GRADE		40		
CONTRIBUTION OF IN-TERM STUDIES TO OVERALL GRADE		60		
Total		100		

	COURSE'S CONTRIBUTION TO PROGRAM					
No	No Program Learning Outcomes		Contributior			on
		1	2	3	4	5
1	Gets a sound base for the main fields of physics such as Classical Mechanics, Quantum Mechanics and Electromagnetism,					Х
2	Gets the ability of interpreting, analysing, forming a synthesis and relationships between the main fields of physics and/or other sciences,					Х

3	Obtains the education required for the measurements in scientific and technological areas and the contribution of physics in the industrial applications and on the macroscopic scale such as the society,		х
4	Follows the up-to-date scientific developments, makes the analysis/synthesis for the new ideas and evaluates them,		Х
5	Uses the academic sources, the computer technology and the related devices,	Х	
6	Joins the working and research groups, also the scientific meetings, communicates well at the national and international level,	Х	
7	Gets the ability of creative and critical thinking, problem solving, researching, producing a new and original work, improving himself/herself in his/her own fields of interest,		х
8	Gains the concepts of ethics and responsibility. Undertakes the responsibility for the solutions to the problems related with his/her field as required for having an intellectual identity.	х	

ECTS ALLOCATED BASED ON STUDENT WORKLOAD BY THE COURSE DESCRIPTION						
Activities	Quantity	Duration (Hour)	Total Workload (Hour)			
Course Duration (Including the exam week: 16x Total course hours)	16	4	64			
Hours for off-the-classroom study (Pre-study, practice)	16	5	80			
Mid-terms	2	10	20			
Quizzes	4	1	4			
Ödev	8	3	24			
Final examination (with reparation)	2	10	20			
Total Work Load			252			
Total Work Load / 25 (h)			10			
ECTS Credit of the Course			10			

COURSE INFORMATION							
Course TitleCodeSemesterL+P HourCreditsECTS							
Introduction To Critical Thinking	PHYS 528	2	2 + 0	2	4		

Language of Instruction	English
Course Level	Postgraduate
Course Type	Elective
Course Coordinator	
Instructors	
Assistant	
Goals	To help students distinguish between harmful forms of thought and beneficial forms of thought, to teach students to reason rationally, write sound and effective arguments, behave ethically, and understand how knowledge is gained.
Content	Critical thinking and its relation to science and humanism, argument mapping, egocentrism and sociocentrism, rational and irrational arguments, logical and formal fallacies, questioning, ethical thinking and the theory of knowledge.

Learning Outcomes	Teaching Methods	Assessment Methods
1) Human thinking left to itself leads to various forms of self-deception.	1 ,12	A
2)Realisation that many types of thinking can be harmful, but more congenial to human nature.	12	A
3) To distinguish between scientific thought and nonscientific thought.To recognise egocentrism and sociocentrism as being 'ordinary' thinking.	2,3,12	A ,C
 The role of questioning in critical thinking requires being active in reading, writing, listening and thinking. 	12	А
5) Development of the skills to map arguments effectively, avoiding logical fallacies.	1,2,3,12	A,C
6) To recognise and produce a good argument. To recognise what invalidates an argument and how to repair it.	1,2,3,12	А
7) To be familiar with informal fallacies, and their pitfalls	1,2,3	A,C

8) To be aware of tone, balance and bias in texts	1,2,3,12	А
9) Obtain understanding of ethical thinking	1	А
10) Obtain understanding of Socratic questioning and questions that will lead to good thinking	1, 2,3	A,C
11)To practice deep learning of a body of knowledge by organisation, thought and reflection.	1	А

Teaching Methods:	1: Lecture, 2: Question-Answer, 3: Discussion, 9: Simulation, 12: Case Study
Assessment Methods:	A: Testing, C: Homework

	COURSE CONTENT					
Week	Week Topics					
1	Components of critical thinking and ordinary thinking, humanism, bigotry and bias	Lectures,1, 2, 4				
2	Critical thinking in science and socratic questioning	Lectures,1,2				
3	Argument mapping 1- components of a simple argument, mapping logic	Lectures, 4				
4	Argument mapping 1-case study 1	Lectures, 3				
5	Argument mapping 2-multiple premises, co-premises, the golden rule, the rabbit rule, holding hands rule. Logical fallacies.	Lectures, 3				
6	Argument mapping 2-case study 2	Lectures, 3				
7	Midterm exam 1					
8	Egocentrism and sociocentrism as results of 'ordinary' thinking	Lectures, 1, 2				
9	Classifying arguments: case studies, repairing arguments.	Lectures, 3				
10	Informal fallacies 1: case studies, tone, balance and bias in texts.	Lectures,1, 3				
11	Informal fallacies 2: case studies, tone, balance and bias in texts.	Lectures, 1,3				
12	Midterm exam 2					
13	Standards for thinking: ethical thinking, Socratic questioning, questions that lead to excellence of thought.	Lectures,1				
14	The theory of knowledge (TOK)	Lectures, 1				

RECOMMENDED SOURCES

Textbook	1. Critical thinking, 3rd edn – R. Paul and L. Elder
Additional Resources	2. Think critically- Facione and Gittens, 2013

MATERIAL SHARING					
Documents	 Various articles from the media, 4. Developing critical thinking skills, W.T. Daly 				
Assignments	Four homework assignments				
Exams	Two mid-term exams and one final				

ASSESSMENT				
IN-TERM STUDIES	NUMBER	PERCENTAGE		
Mid-terms	2	30		
Lab practicals	0	0		
Assignment	5	10		
Seminars	3	10		
Total		50		
CONTRIBUTION OF FINAL EXAMINATION TO OVERALL GRADE		50		
CONTRIBUTION OF IN-TERM STUDIES TO OVERALL GRADE		50		
Total		100		

COURSE CATEGORY Expertise/Field Courses

COL	JRSE CATEGORY	Expertise/Fi	eld	Со	urse	es	
No Program Learning Outcomes		Contribution					
			1	2	3	4	5
1	Gets a sound base for the main fields of physics such as Classical Mechanics, Quantum Mechanics and Electromagnetism,			Х			
2	² Gets the ability of interpreting, analysing, forming a synthesis and relationships between the main fields of physics and/or other sciences,						Х
3	Obtains the education required for the measurements in scientific and technological areas and the contribution of physics in the industrial applications and on the macroscopic scale such as the society,					Х	
4 Follows the up-to-date scientific developments, makes the analysis/synthesis for the new ideas and evaluates them,						Х	

5	Uses the academic sources, the computer technology and the related devices,		Х
6	Joins the working and research groups, also the scientific meetings, communicates well at the national and international level,	Х	
7	Gets the ability of creative and critical thinking, problem solving, researching, producing a new and original work, improving himself/herself in his/her own fields of interest,		Х
8	Gains the concepts of ethics and responsibility. Undertakes the responsibility for the solutions to the problems related with his/her field as required for having an intellectual identity.		Х

ECTS ALLOCATED BASED ON STUDENT WORKLOAD BY THE COURSE DESCRIPTION					
Activities	Quantity	Duration (Hour)	Total Workload (Hour)		
Course Duration (Including the exam week: 16x Total course hours)	16	2	32		
Hours for off-the-classroom study (Pre-study, practice)	16	4	64		
Mid-terms	2	2	4		
Homework assignments	5	1	5		
Final examination	1	2	2		
Total Work Load			107		
Total Work Load / 25 (h)			4.28		
ECTS Credit of the Course			4		

COURSE INFORMATION							
Course Title Code Semester L+P Hour Credits ECTS							
ADVANCED METROLOGY	PHYS 542	2	3+ 0+0	3	8		

Language of Instruction	English
Course Level	Postgraduate
Course Type	Compulsory
Course Coordinator	
Instructors	Assist. Prof. Dr. Melda Patan Alper
Assistant	
Goals	To provide students with knowledge of how to use physics knowledge in measurements of science.
Content	Brief history of measurements, measurements instruments; instruments classification and characteristic, active/passive filter, sensitivity, bias, tolerance etc., Error in measurements, firs and second order instruments, guidelines for evaluating and expressing uncertainty, Primary, secondary and workin standards, traceability, measurements of electrical quantities; Bridge circuits, Nu type-Wheatstone bridge, deflection bridge etc. temperature measurements; ITS 90 scale, practical temperature measurements etc.

Learning Outcomes	Teaching Methods	Assessment Methods
1) To learn measurement systems from past to present	1,2,3	A,C
2) To learn how to use physics knowledge for physical measurements system	1,2,3	A,C
3) To learn the importance of instrument classification and characteristics	1,2,3	A,C
4) To understand wide range of measurement techniques in physics, used for industry.	1,2,3	A,C
5) To understand the realisation and maintanance of SI base units	1,2,3	A,C

Teaching Methods:	1: Lecture, 2: Question-Answer, 3: Discussion, 9: Simulation, 12: Case Study
Assessment Methods:	A: Testing, C: Homework, I:Laboratory

COURSE CONTENT						
Week	Topics	Study Materials				
1	History of measurements					
2	Instrument classification and characteristics					
3	Instrument classification and characteristics					
4	Error in measurements system and quide to evaluation of measurement uncertainties					
5	Error in measurements systems and quide to evaluation of measurement uncertainties					
6	Primary, Secondary and working metrological standards					
7	Primary, Secondary and working metrological standards					
8	Measurements of electrical quantatities					
9	Bridge circuits, errors in bridge measurement system					
10	Realisation of national voltage standards, volts					
11	Realisation of national Ampere standard					
12	Realisation of national resistance; quantum hall effect					
13	Temperature measurements; ITS-90 scale					
14	Practical temperature measurements					

	RECOMMENDED SOURCES
Textbook	 G.M.S. de Silva, "Basic Metrology for ISO 9000 Certification Alan S. Morris, "Principles of Measurements and Instrumentation"
Additional Resources	 Bernhard Kramer, "The Art of Measurement", PTB, Germany. Tom Duncan, "Success in Electronics"

MATERIAL SHARING		
Documents	Lecturer Notes	
Assignments	Homework assignments every three to four weeks	
Exams	Two mid-term exams and one final	

ASSESSMENT				
IN-TERM STUDIES	NUMBER	PERCENTAGE		
Mid-terms	2	40		
Home-works and presentations	4	10		
Total				
CONTRIBUTION OF FINAL EXAMINATION TO OVERALL GRADE		50		
CONTRIBUTION OF IN-TERM STUDIES TO OVERALL GRADE		50		
Total		100		

COURSE'S CONTRIBUTION TO PROGRAM							
No	No Program Learning Outcomes		Contrib			oution	
		1	2	3	4	5	
1	Gets a sound base for the main fields of physics such as Classical Mechanics, Quantum Mechanics and Electromagnetism,		Х				
2	Gets the ability of interpreting, analysing, forming a synthesis and relationships between the main fields of physics and/or other sciences,			Х			
3	Obtains the education required for the measurements in scientific and technological areas and the contribution of physics in the industrial applications and on the macroscopic scale such as the society,					Х	
4	Follows the up-to-date scientific developments, makes the analysis/synthesis for the new ideas and evaluates them,				Х		
5	Uses the academic sources, the computer technology and the related devices,				Х		
6	Joins the working and research groups, also the scientific meetings, communicates well at the national and international level,		Х				
7	Gets the ability of creative and critical thinking, problem solving, researching, producing a new and original work, improving himself/herself in his/her own fields of interest,					Х	
8	Gains the concepts of ethics and responsibility. Undertakes the responsibility for the solutions to the problems related with his/her field as required for having an intellectual identity.		Х				

ECTS ALLOCATED BASED ON STUDENT WORKLOAD BY THE COURSE DESCRIPTION			
Activities	Quantity	Duration (Hour)	Total Workload (Hour)

Course Duration (Excluding the exam week: 14x Total course hours)	14	3	42
Hours for off-the-classroom study (Pre-study, practice)	14	8	112
Mid-terms	2	3	6
Home works and presentations	4	7	28
Final examination	1	3	3
Total Work Load			191
Total Work Load / 25 (h)			7.64
ECTS Credit of the Course			8

COURSE INFORMATION							
Course Title Code Semester L+P Hour Credits ECTS							
MSc Thesis	PHYS 590	3 & 4			30		

-

Language of Instruction	English
Course Level	MSc
Course Type	Compulsory
Course Coordinator	
Instructors	
Assistants	
Goals	The aim of this course is to work/study on a project about the fields of physics that the student has learned during the eduation.
Content	Finalizing the the project, report writing and presentation

Learning Outcomes	Teaching Methods	Assessment Methods
Has the ability to work on a project in physics in experimental or theoretical way.	1, 2, 3, 11, 16	D, E, G, H

Teaching1: Lecture, 2: Question-Answer, 3: Discussion, 11: Seminar, 16: OralMethods:Exam			
Assessment D: Proje, E: Report, G:Presentation, H:Application Methods:			
RECOMMENDED SOURCES			
Textbook	Textbook depends on the project		
Additional Resources			

	MATERIAL SHARING
Documents	
Assignments	
Exams	

ASSESSMENT			
IN-TERM STUDIES	NUMBER	PERCENTAGE	
Report	1	85	
Presentation	2	15	
Total		100	
CONTRIBUTION OF FINAL EXAMINATION TO OVERALL GRADE		15	
CONTRIBUTION OF IN-TERM STUDIES TO OVERALL GRADE		85	
Total		100	

	COURSE'S CONTRIBUTION TO PROGRAM					
No	Program Learning Outcomes	Contribution				
		1	2	3	4	5
1	Gets a sound base for the main fields of physics such as Classical Mechanics, Quantum Mechanics and Electromagnetism,					Х
2	Gets the ability of interpreting, analysing, forming a synthesis and relationships between the main fields of physics and/or other sciences,					Х
3	Obtains the education required for the measurements in scientific and technological areas and the contribution of physics in the industrial applications and on the macroscopic scale such as the society,					х
4	Follows the up-to-date scientific developments, makes the analysis/synthesis for the new ideas and evaluates them,					Х
5	Uses the academic sources, the computer technology and the related devices,					Х
6	Joins the working and research groups, also the scientific meetings, communicates well at the national and international level,					Х
7	Gets the ability of creative and critical thinking, problem solving, researching, producing a new and original work, improving himself/herself in his/her own fields of interest,					Х
8	Gains the concepts of ethics and responsibility. Undertakes the responsibility for the solutions to the problems related with his/her field as required for having an intellectual identity.					Х

ECTS ALLOCATED BASED ON STUDENT WORKLOAD BY THE COURSE DESCRIPTION				
Activities	Quantity	Duration (Hour)	Total Workload (Hour)	
Course Duration (Excluding the exam week: 14x Total course hours)	14	3	42	
Hours for off-the-classroom study (Pre-study, practice)	14	50	700	
Report	1	3	3	
Presentation	1	3	3	
Total Work Load			748	
Total Work Load / 25 (h)			29.92	
ECTS Credit of the Course			30	

	CO	URSE INFORMATIO	ON		
Course Title	Code	Semester	L+P Hour	Credits	ECTS
Seminar	PHYS 580	2			2

-

Language of Instruction	English
Course Level	MSc
Course Type	Compulsory
Course Coordinator	
Instructors	
Assistants	
Goals	The aim of this course is to work/study on a project about the fields of physics that the student has learned during the eduation.
Content	Report writing and presentation

Learning Outcomes	Teaching Methods	Assessment Methods
Has the ability to work on a topic in physics in experimental or theoretical way.	1, 2, 3, 11, 16	D, E, G, H

Teaching Methods:	1: Lecture, 2: Question-Answer, 3: Discussion, 11: Seminar, 16: Oral Exam		
Assessment Methods:	D: Project, E: Report, G:Presentation, H:Application		
	RECOMMENDED SOURCES		
Textbook	Textbook depends on the title of the subject		
Additional Resources			

	MATERIAL SHARING
Documents	
Assignments	
Exams	

ASSESSMENT					
IN-TERM STUDIES	NUMBER	PERCENTAGE			
Report	1	55			
Presentation	2	45			
Total		100			
CONTRIBUTION OF FINAL EXAMINATION TO OVERALL GRADE		45			
CONTRIBUTION OF IN-TERM STUDIES TO OVERALL GRADE		55			
Total		100			

COURSE'S CONTRIBUTION TO PROGRAM								
No	Program Learning Outcomes	Contribution						
			2	3	4	5		
1	Gets a sound base for the main fields of physics such as Classical Mechanics, Quantum Mechanics and Electromagnetism,					Х		
2	Gets the ability of interpreting, analysing, forming a synthesis and relationships between the main fields of physics and/or other sciences,					Х		
3	Obtains the education required for the measurements in scientific and technological areas and the contribution of physics in the industrial applications and on the macroscopic scale such as the society,					Х		
4	Follows the up-to-date scientific developments, makes the analysis/synthesis for the new ideas and evaluates them,					Х		
5	Uses the academic sources, the computer technology and the related devices,					Х		
6	Joins the working and research groups, also the scientific meetings, communicates well at the national and international level,					Х		
7	Gets the ability of creative and critical thinking, problem solving, researching, producing a new and original work, improving himself/herself in his/her own fields of interest,					Х		
8	Gains the concepts of ethics and responsibility. Undertakes the responsibility for the solutions to the problems related with his/her field as required for having an intellectual identity.					Х		

ECTS ALLOCATED BASED ON STUDENT WORKLOAD BY THE COURSE DESCRIPTION					
Activities	Quantity	Duration (Hour)	Total Workload (Hour)		

Course Duration (Excluding the exam week: 14x Total course hours)	14	2	28
Hours for off-the-classroom study (Pre-study, practice)	14	2	28
Report	1	3	3
Presentation	1	1	1
Total Work Load			60
Total Work Load / 25 (h)			2.4
ECTS Credit of the Course			2

Courses and Program Learning Outcomes								
Physics MSc Program								
Courses	LO1	LO2	LO3	LO4	L05	L06	L07	L08
Electromagnetism I	5	5	4	4	2	2	5	2
Statistical physics & thermodynamics	5	5	4	4	2	2	5	2
Mathematical methods and classical mechanics	5	5	4	4	2	2	5	2
Quantum Mechanics I	5	5	4	4	2	2	5	2
Advanced Metrology	5	5	4	4	2	2	5	2
Introduction to Critical Thinking	2	2	4	5	5	2	5	5
Seminar	5	5	5	5	5	5	5	5
Thesis	5	5	5	5	5	5	5	5

Level of Qualification:

• Total; Having achieved 7 courses, seminars and thesis, provided that it is 21 credits and not less than 120 ECTS,

- Grade point average must be at least 3.00 out of 4,
- A minimum grade of CC from credit courses.

Admission to Postgraduate(MSc.) Program:

• Having a bachelor's degree

• A minimum score of 55 from international foreign language exams accepted as equivalent to foreign language exams or an equivalent score from international foreign language exams accepted as equivalent by ÖSYM,

• Taking at least 55 (numerical) from ALES exam.

Percent Age	Course Grade	Grade Points
90-100	AA	4.00
85-89	BA	3.50
80-84	BB	3.00
75-79	CB	2.50
74 and below	FF	
	FA	Fail from attendance

ASSESSMENT AND GRADING

Other Grades:

I: Incomplete is given to a student who provides supporting evidence through genuine and valid documentation of illness or other reason which has prevented her/him form completing the necessary course work. In such a case, within 15 days form the day of submitting the grades to the Registrar's Office, the student required complete the missing work and obtain a grade. Otherwise, the I grade will automatically become an F

P: Pass is given to students who are successful in taking non-credit courses.

X: In Progress is used when the work of a student is a course extends past the time for reporting grades.

T: Transfer is given to courses accepted as equivalents in transfers form other universities.

W: Withdrawal is given if a student withdraws from a course after the add/drop period within the first 10 weeks after the semester starts, with the recommendation of her/his advisor and the permission of the instructor concerned.

Overall Classification of the Qualification

 Honors
 3.00-3.49
 1

 High Honors
 3.50-4.00
 1

CONTACTS

Head of the Department

Assoc. Prof. Dr. Vildan ÜSTOĞLU ÜNAL Vice Dean of Faculty of Arts and Sciences Physics Department Ext:1670 vunal@yeditepe.edu.tr

Bologna Coordinator Assist. Prof. Dr Melda PATAN ALPER Physics Department Ext:1688 <u>mpatan@yeditepe.edu.tr</u>

Address: Yeditepe Üniversitesi, 26 Ağustos Yerleşimi, Fen-Edebiyat Fakültesi, Fizik Bölümü, İnönü Mah., Kayışdağı, 34755, ATAŞEHİR, İSTANBUL, TÜRKİYE

Secretary: Burcu EBELER Tel : +90 216 578 0671, Fax: +90 216 578 0672